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NASA AEROTHERMAL MODELING

OBJECTIVE: ASSESS CURRENT COMBUSTOR MODELS
AND IDENTIFY MODEL DEFICIENCIES

APPROACH
TASK |  MODEL DEFINITION
DATA BASE GENERATION
BENCHMARK TEST CASES

TASK Il MODEL EXECUTION
MODEL ASSESSMENT
PROGRAM PLAN FOR MODEL IMPROVEMENT
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=y
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MODULAR APPROACH FORMS THE BASIS OF
COMBUSTION ANALYSIS AT GTEC

ANNULUS FLOW MODEL
e PRESSURE DROP COMBUSTOR FLOW MODEL

® AIRFLOW DISTRIBUTION ® INTERNAL FLOW FIELD
© BOUNDARY CONDITIONS ® TEMPERATURE & F/A
DISTRIBUTION

ALITYND ¥00d 40

- Bl 39v4 TYMNDING

TRANSITION MIXING NEARWALL MODEL

® JET MIXING ® LINER CONVECTIVE AND
® BURNER EXIT RADIATIVE FLUXES
TEMPERATURE QUALITY ® LINER WALL TEMPLARATURE

DISTRIBUTION




EMPIRICAL/ANALYTICAL DESIGN APPROACH
HAS BEEN SUCCESSFUL IN SEVERAL
COMBUSTOR DESIGNS
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SUBMODELS ARE USED TO DESCRIBE
THE FOLLOWING SEVEN COMBUSTION PROCESSES

e TURBULENCE
e SCALAR TRANSPGRT
e CHEMICAL KINETICS

e TURBULENCE/CHEMISTRY INTERACTION
(GASEOUS COMBUSTION])

e SPRAY EVAPORATION/COMBUSTION
e SO0T FORMATION AND OXIDATION
e RADIATION —




k- TURBULENCE MODEL IS WIDELY USED FOR

RECIRCULATING rLOWS

e TRANSPORT EQUATION
(C—D)# = S

Gk = Gk (MEAN VELOCITY GRADIENTS)

Sk= Gk- pe
€
Se =(CI Gk-CZPE)‘?

Ht=Cppk2/e

x?
1/2
(C2-C|)CD

“eff, e =

c, =  0.09
c. = .44
1 1.4 x = 0.41
c, = 1.92

6302055

e WALL FUNCTION ARE USED FOR NE?}-WALL REGIONS
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LOW-REYNOLDS NUMBER CORRECTION IS NEEDED
FOR ACCURATE NEAR-WALL Z, k AND ¢ PREDICTION

SOURCE TERMS IN k — EQUATION = Sy — 2u }yz

SOURCE TERMS IN &£ EQUATION = S, — 2 g ¢-0.5y* £,
y

Se = (C1 Gk — C2 f2 pe) e/k 95
Heff = u * m ty gg
$E
f2 = 1.0 — 0.22 exp (~R, /6)° Cm
3a
fy = 1.0 — exp (—0.0115 y*)
y* = k% Cp™ y/u
R = _gl_(_?-
t = pe
=\
63-02068A



EXTRA STRAIN CAUSED BY
STREAMLINE CURVATURE AND SWIRL
CAN BE PARTIALLY ACCOUNTED BY
RICHARDSON NUMBER CORRECTION

C2 = '092exp('av8 Rivo‘ ac Ric), o = 0.2

2 v
. k R o
Ne= a2 T2 & RW

VR =\/u24 vZ

¥ U, 2V 2 U
rl<= WS -35 )« VU Ly >
K

YR

v
(5) 2 (rvg)
T

Rivu =
G2 ird (Y 3)2
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ALGEBRAIC REYNOLDS STRESS MODEL
CCRRECTLY PREDICTS INDIVIDUAL COMPONENTS
IN SIMPLE FLOWS

Reynolds Stress Transport Equation

(D%—Diff) uuj = Pij — €j + m;
© Assume
%3
v.u. § Dk .
i#f To) = DX _ Diff o) EE
B Ty - D) - -L-‘-{D' ' } 3r
ER
= %— (P 'f) 36
;7= %e (c'l-|)+§P(a+ﬁ)+ 2 (l-P
C" %4- CU' EE
V2 - %‘(C'|‘”*:2§P(a+ﬁ)-2pﬁ
C £+ C' Pee
S04 bk ™ v P
* * =

wl o= (2K - 02 -2



ALGEBRAIC REYNOLDS STRESS MODEL
CORRECTLY PREDICTS INDIVIDUAL COMPONENTS
IN SIMPLE FLOWS (CONTD)

[ v u2
we | UM + BT | 2 oy
c S ar
|
v 3(1 Y2 N Wi Ve ) + vk Vg
ar r ar g‘)g
B(‘zJ_, w2 Vg J'Jgﬁ)f ¢, = §§
ar :u,é
2 &V avV w Y €3
w {(l YW T8+ w )i (Wl %Y w 8, E8
dx or o r i::
(7.3
na_vg} ¢, &
o x
2
N [( ) & vﬁ-"’J/c,
A
N7

C’1, a. B and y are Empirical Constants
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REYNOLDS STRESS TRANSPORT MODEL
SOLVES SEVEN PARTIAL DIFFERENTIAL EQUATIONS

(§ — Diff) ujyj = Sg

S? % PG(CI 1) +§ G @s+B) -2 -a)p‘@aa%
av 2y,
2 P8 Wg—x+—:3xiJ 2 rox 3
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REYNOLDS STRESS TRANSPORT MODEL
SOLVES SEVEN PARTIAL DIFFERENTIAL EQUATIONS (CONTD)

v
S_u:/- = =p(l -a) [:2 %—UF-D_\;' :—g-ﬂr:zavl

ox
-5 oV Vv
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SCALAR TRANSPORT PROCESSES MUST BE
MODELED PROPERLY TO ACCURATELY PREDICT
REACTION RATES

Assume Constant oy

: Heff -
vV (pVf _—O'T vi) = Sf

(o N @)
na

°
Scalar Transport Equations: %
k-¢ Model Uses Gradient Diffusion Assumption =
18 )
=5 _96_ E §
p Teff, 0 3 3
eff, 1 &

Vo g
pv Teff, 0 2

r
°’ =
63-0205-12
Teff,p = Heff/9
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THE ALGEBRAIC SCALAR TRANSPORT MODEL
PREDICTS COUNTER-GRADIENT DIFFUSION OF
SCALAR IN SIMPLE FLOWS

Transport Equations for u.9':
3

. ™ Y . " N - -
Div (pv ujo) Duff(pujo) PPjo Pew * P,
D e ~ I ~ ——yp———
I |
Conve!:tion Diffusion Production I Redistribution
Dissipation
. o0
Assumption: n3
- S 2
e Y s PCUR SN PRR |
Div (pv ujo - Diff (pujO ) = a9 K -€) + ay 0_.7 -0 ‘8;
ZAa
37
where:

Y]

Po 2 Uj a—;

J

2
€ 0 P
6=%0 N

63-0205-13
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THE ALGEBRAIC SCALAR TRANSPORT MODEL
PREDICTS COUNTER-GRADIENT DIFFUSION OF
SCALAR IN SIMPLE FLOWS (CDNTD]

The transport equation for scalar fluctuations, 0 . is

2 —
div (pvo ) - Diff (P8 ) = PPy - peg
—t St — 00
. “m
Convection Diffusion Production  Dissipation . g
Assume: § >
=
S —3 \ g;:
div (PVe') - Diff (P8 ) ~ C, —BE (P-¢) B &
3
- = - P-€
— 90 ., 2 @|[lc,, £+9 ( )]
vo [UV 3x v af]/[ lg k | k
vy 28, 8, 4N
ub [ A w5 6 5 (I C29)
[~
P-¢ € U N
£3.0205-14 [ol (T) P (l-cze) 5—;]
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THE ALGEBRAIC SCALAR TRANSPORT MODEL
PREDICTS COUNTER-GRADIENT DIFFUSION OF
SCALAR IN SIMPLE FLOWS (CONTD)

] [_ e — -
o _ ' 26 ' 20
= - 21 ub ax+v6 al’]/
©0
-
P-e) € 0
c -] + o, ¢
[9 ( k 6 k] 8%
o r
QN
c»
28
Recommended Values For Model Constants: -2-_‘5
C10 = 1.6. 020 = 0.5, ag = 1.25, Co =08, a; =08
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DATA BASE FOR IDEAL ELEMENT TESTS
COMPILED FROM A LITERATURE SURVEY

e DATA BASE COMPILED FOR THE FOLLOWING SUBMODELS:
= TURBULENCE MODELING
= GASEQOUS COMBUSTION
= SPRAY EVAPORATION AND COMBUSTION
= SO0T FORMATION AND NXIDATION
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DATA BASE FOR IDEAL ELEMENT TESTS
COMPILED FROM A LITERATURE SURVEY (CONTD)

e FOR ALL CASES, THE DATA BASE IS ORGANIZED
IN INCREASING ORDER OF COMPLEXITY OF THE FLOW.
FOR TURBULENCE MODELING THE CATEGORIES ARE

= SIMPLE FLOWS (BOUNDARY LAYERS, MIXING
LAYERS, ETC.)

= STREAMLINE CURVATURE EFFECTS (CURVED DUCTS,
CURVED BOUNDARY LAYERS, ETC.)

= RECIRCULATING FLOWS (NONSWIRLING) (BOTH
UNCONFINED AND CONFINED)

= SWIRLING FLOWS (WITH AND WITHOUT RECIRCULATION)
= SCALAR TRANSPORT ,
=

630205-17A
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DATA BASE FOR IDEAL ELEMENT TESTS
COMPILED FROM A LITERATURE SURVEY (CONTD)

® IN GASEOUS COMBUSTION, THE DATA BASE
IS CATEGORIZED INTO

= LAMINAR PREMIXED FLAMES
* LAMINAR DIFFUSION FLAMES
* TURBULENT PREMIXED FLAMES
= TURBULENT DIFFUSION FLAMES

® DATA BASE FROM GARRETT GAS TURBINE
COMBUSTORS IS INCLUDED




A NUMBER OF SIMPLE FLOWS
HAVE BEEN ANALYZED

WATTS AND BRUNDRETT
FLOW OVER A FLAT PLATE

- Ua R

f——t %

SARBIN AND JONES
DEVELOPING PIPE FLOW

VIIVIPIIVIIIIVIIIIVIVIFVIIFS

Or2

61

63-0205-19

EMERY AND GESSNER
2-0 CHANNEL FLOW

T

.

L

LAUFER PIPE FLOW

- l ]
L\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Y

SAARA T TH I T E EE = = $©®>Xx>s

EL TELBANY AND REYNOLDS
COUETTE FLOW

. S

SAIY AND PEERLESS
TWO STREAM MIXING LAYER
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A NUMBER OF SIMPLE FLOWS
HAVE BEEN ANALYZED (CONTD)

CHAMPAGNE AND WYGNANSKI
MIXING OF TWQ CCAXIAL JETS IN AMBIENT AR

Coaxial Typical Axist Mean
Nozzies Velocity Profile in
!9::::-:3.! Developing Region
Core |..er g'olq'city Prnofilp In
Potential imilarity egion
Core Y
S v L
)
-G Di e U e %

=5 -
Vo Ym/2 e
v

Max

Oevelopment Rogion-|~

Similarity
Region

WYGNANSK! AND FIEOLER
AXISYMMETRIC FREE JET

Ygr

e

FLOW OVER A WEATEB FLAT PLATE

Tair
Vain

'-—-x

CHARNAY ET AL

¥o0d 40
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A NUMBER OF SIMPLE FLOWS
HAVE BEEN ANALYZED (CONTD)

HAUTMAN ET AL MITCHILL ET AL
PLUG FLOW REACTOR

HASSAN AND LOCKWOOS
CONCENTRIC FUEL AMD AIR JETS FREE METHANE TURBULENT JET FLAME
MW CONTAINED IN A CYLINDRICAL COMBUSTOR
1 PRODUCTS
REACTANTS . r {. /
ADIABATIC WALLS
I-—— 120cm ——————{

9O

FLow "X

PATTERN o g

\ xt : ! " §r>"

Lo i)

SHIPMAN AND CO-WORKERS rr % G>5

CONFINED STOICMIOMETRIC FLAME STABILIZED ON A AR FUEL cm

CYLINDRICAL FLAMENOLDER IN A RECTANGULAR DUCT 1 @

ADIABATIC WALL

77777977974

PREMIXED ! l
» [, ]

- FUEL — AIR
bx g}

. I
IA ,/?-.x - 2,

g

FLAMEHOLDER




A NUMBER OF COMPLEX NONSWIRLING FLOWS
HAVE BEEN INVESTIGATED

SHIVA-PRASAD AND RAMA-PRIYAN KIN, KL'EE. AND JONNSTON (1978) AND EATON AND JORNSTON
FLOW iN A CURVED CNANNEL FLOW OVER A BACKWARD FACING PLANE STEP

MELSUREMENT
L b X LOCATIONS
1 L

£

WIPIPIFIIVIPIIIINI DY, LLLLLLL

[ ]
] [ 2]
[} ‘

: v ;o !/ T ! (o N e
7 , ! ’v m X
’ ’ Y, -
STRAIGHT ‘ ¢ ," . ’ g
SECTION n ," 1 x , >
- 25‘“ } L ﬁ '.
3
ER
PRATARAPHRUK AND LOGAN MOON AND RUDINGER i -
FLAW OVER A RING IN A PIPE SUDDEN PIPE-EXPANSION @

5
N
!

U




A NUMBER OF COMPLEX NONSWIRLING FLOWS
HAVE BEEN INVESTIGATED (CONTD)

WEDGE-SHAPED FLAMENOLDER

APL COMBUSTION TURNEL

- <L

°8

v 0

8 2

R4

JEAKSON AND BEANETT PITZ AND DAILY o

FLOW THAOUGH A SUDDEN EXPANSION 1N A PIPE FLOW BENIND A BACKWASD FACING STEP c>
~m

3@

T :
¢ r
. @
COMFUTATION

REGION



A NUMBER OF COMPLEX NONSWIRLING FLOWS
HAVE BEEN INVESTIGATED (CONTO)

SCHEFFER AND SAWYER

LEWIS N0 SMOCT
OPPOSED JET COMBUSTOR AXISYMMETRIC COMSUSTOR tITH COAXIAL FUEL ANS AW JETS

/ /ﬂl&"
]
LLLLLll Ll 4
i : . ChLdLdllLl/
- PROTNE Bem 1D -— “‘_—” : 1 R
L . am
F“‘llll““““\li AR T T T I ITEC S ERSE—————
CIIIIIIII IS IS I } S s —
r— R
' ity FUEL - - -
pet X I
e . -
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A NUMBER OF SWIRLING FLOWS
HAVE BEEN INVESTIGATED

MOASE
g TWO COAXIAL ¢TS IN STAGNANT AIR

U2+ 1 = oF ]
a— A - 2
Uqy = t f]

GTEC
NONREACTING SWIRLING COMBUSTOR

P3=.984 ATM T3=723°R WA:’-.'I').Q‘)PPS Wbﬂ =874

2(!.‘ 17 145 1‘.5*WA3
336 r— 0.51
7.62 16.51 D (CM)
X
300

—{292f—

292 08—

17.91
24.5)
630205-25 3048
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SWIRLING FLOW INVESTIGATION

GTEC
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A NUMBER OF SWIRLING FLOWS
HAVE BEEN INVESTIGATED (CONTD)

BRUM AND SAMUELSEN
SWIRL COMBUSTOR WITH COOLING AIR

50
DILUTION — | 0.089 THICK
AIR =1
’ 15 M/8 REF VEL
SWIRL —o - 60865
AR _t *30
T YT 5.7
- @:Ei LT ) B - -
INJECTION LLstesgecd) 4
- 0.01 ’
BAP
154 m/8

ALL DIMENSIONS (N CM

63-0205-26

SWIRLER

JANJUA ET AL
SWIALING FLOW IN A PIPE EXPANSION

IIIIIIIIIIIIIIZIIIIIIIIY.

7
Y,
4
4
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D
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T

4
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A NUMBER OF SWIRLING FLOWS

HAVE BEEN INVESTIGATED (CONTD)

ALTGELD, JONES, AND WILHELMI
CONFINED SWIRL-ORIVEN FLOW

EL-BANHAWY AND WHITELAW

CYLINDRICAL COMBUSTGR WITH ROTATING CUP

ATOMIZER AND AIR INTRODUCED THROUGH A SWIRLER
SURROUNDING THE ATOMIZER

BLOCKAGE

>M§:T~-

— -

qvnd yood 40
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3-D DILUTION JET MIXING CALCULATIONS

]
vi o
. i .
bad A0
- |
|
d 7 Y
* DILUTION JET MIXING.3.D CASES
JET
DIAMETER, D
(CM) $/0 Ho | 4
127 2 7
’;',':%‘ 18 283 5.66 25.48
254 2 4 2150
INJECTION 254 2 ) 2158
254 4 4 6.14
PROFILED MAINSTREAM
TEMPERATURE 254 2 4 2263
, ToP 127 7 8 2485
IUNE o Tom 127 2 8 2476
TOP 254 4 4 26.4
STAGGERED (oo rrom 254 s 3 %11
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EFFECTS OF LOW REYNOLDS NUMBER CORRECTION
ON ASM PREDICTIONS FOR FLAT PLATE

R3-0281-1
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ASM PREDICTIONS FOR TWO-STREAM MIXING LAYER:
Ug/U) = 043

6302812

8.04
i

XXXXX 3 Cu
[
(2
.4
w
—
38
>
&
i T )
0.00 25.00 80.00
U-VEL, M/SEC
b4
°7
o3
a-
w
—
E L
o
>
s
? L 1
0.00 25.00 30.00
U-VEL, M/SEC

¥ . METERS

Y, METERS

0.04
}

® Ye1§ Cu
3
e
s
' u *—
.00 28.00 50.00
U-VEL, M/SEC
:- X=20 CM
T !
°
-4
s
< T ‘.__1
0.00 25.00 50.00

U~-VEL, M/SEC

Bi 35Yd TYNIDRO
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METERS

Y,

Y,

METERS

ORIGINAL PAGE ig
OF POOR QUALITY

ASM PREDICTIONS FOR
TWO-STREAM MIXING LAYER,

UE/UI

= 043

~ ~
) *
- Xe1§ CM - X200 CM
L]
]
(]
[ 4
w
—
s 13
[ e
> ®
L] . *
®
~ ~ L
e s
b R T 1 in u T A
0.00 2.00 4.00 .00 0.00 2.00 4.00 8.00
U-PRIME, M/SEC U-PRIME, M/SEC
~ ~
® *
- X«18 C .-.l X=20 CM
v
-4
w
[y
28
3
oy
3 3
* T T 1 *< T T 1
0.00 2.00 4.00 8.00 8.00 2.00 4.00 6.00
V-PRIME, M/SEC V-PRIME, M/SEC
s s
e X=18 C¥ e X=20 CM
14
[- 4
w
o
53
°
>
s s
@t T T 1 g T T }
0.00 2.00 4.00 8.00 0.00 2.00 4.00 6.00

W-PRIME, M/SEC

W-PRIME, M/SEC

6302813
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RIGINAL Pi\"E i

"o @A™ ASM PREDICTIONS FOR
CONVEX WALL BOUNDARY LAYER

MEASURE M|
LocAYions

- X=.2813 METERS

4

Y, METERS
0.0

e
®0.00 1.00 2.00
Uv, M2/82
-4
< X=.7010 METERS
=3
“e1%
% °
[ ]
s
.'-!
-
.. 1 |
0.00 1.00 2.00
Uv, M2/82
°
< Lel.148 WETERS
“ ~E
il
Ve
(V]
- §
Py
.'d
2
®0.00 2.00

uv, “M2/82

K=, 4780 WETERS

0.00 1.00 2.00
Uv, M2/82
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PREDICTIONS FROM ASM WITH
STREAMLINE CURVATURE CORRECTION
ALONG CONVEX (INNER) WALL

Y, METERS
.01 0.02
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'] 0.0
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ASM PREDICTIONS ANI) DATA FOR
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(OUTER) CONCAVE WALL
BOUNDARY LAYER
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' 0.0
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uv, M2/s2 uv, M2/82

1.00 0 0.00 1.00
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PREDICTIONS BY ASM WITH STREAMLINE
CURVATURE CORRECTIONS FOR (OUTER)
CONCAVE WALL BOUNDARY LAYER

AGE S
RIGINAL LTV 3
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COMPARISON BETWEEN DATA AND PREDICTIONS
BY ASM WITH STREAMLINE CURVATURE
CORRECTIONS FOR FLOW BEHIND 3.81 CM STEP
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COMPARISON BETWEEN DATA AND PREDICTIONS
BY ASM WITH STREAMLINE CURVATURE
CORRECTIONS FOR FLOW BEHIND 3.81 CM STEP
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STANDARD K-¢ MODEL PREDICTIONS FOR PREMIXED
PROPANE/AIR GAS FLOW ZBEHIND 254 CM STEP;
o = 053

2-STEP KINETIC SCHEME

100,08 100.00 100.00 130.00 10000 J00.60 0.08 30800
TEWPERATURE (DEC K me')

4-STEP KINETIC SCHEME
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COMPARISON BETWEEN DATA AND
K-« MODEL PREDICTIONS FOR FREE
SWIRLING JET; DSZ\Q_)IIRL NUMBER
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COMPARISON BETWEEN DATA AND
K-¢ MODEL PREDICTIONS FOR FREE
SWIRLING JET; DSZ\IgIRL NUMBER
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COMPARISON BETWEEN DATA AND PREDICTIONS
USING 20,000 NODES FOR J = 25.32,
S/D = 200, H/D = 8.00
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COMPARISON BETWEEN DATA AND PREDICTIONS
USING 6000 NODES FOR J = 25.32,
S/D = 2.00, H/D = 8.00
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k-e MODEL AND ITS MODIFICATIONS

GIVES GOOD CORRELATION OF MEAN VALUES FOR
= SIMPLE FLOWS

= FAR-FIELD REGIMES OF NONSWIRLING/SWIRLING FLOWS INVOLVING REGIONS
OF RECIRCULATION

= NONRECIRCULATING SWIRLING FLOWS
= QUTER REGIONS OF STRONG SWIRLING FLOWS

GIVES REASONABLE CORRELATION OF MEAN VALUES FOR .
NONSWIRLING RECIRCULATING FLOWS EXCLUDING VICINITY OF REATTACHMENT POINT
CONFINED DISK FLOW WITH A CENTRAL JET

SHEAR LAYER OF STRONG SWIRLING FLOWS

CONFINED SWIRLER WITH HUB AND SHROUD EXPANSIONS

PREDICTS TRENDS IN MEAN VALUES FOR
= RECIRCULATION ZONE OF SWIRLING FLOW
= CONFINED SWIRLER WITHOUT OUTER EXPANSION

REQUIRES DIFFERENT MODIFICATIONS FOR CONVEX AND CONCAVE o)
WALL SHEAR LAYERS

o 830205204
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63-0205-30 A

ALGEBRAIC STRESS MODEL:
REYNOLDS-STRESS PREDICTIONS

GIVES GOOD CORRELATION FOR
= SIMPLE FLOWS
= NORMAL STRESSES IN NONSWIRLING RECIRCULATING FLOWS

GIVES REASONABLE CORRELATION FOR
= SHEAR STRESSES IN NONSWIRLING RECIRCULATING FLOWS
= NORMAL STRESSES IN SWIRLING FLOWS

PREDICTS TRENDS IN
= SHEAR STRESSES IN SWIRLING FLOWS

DIFFERENT MODIFICATIONS REQUIRED FOR CONVEX AND CONCAVE
WALL SHEAR LAYERS

MEAN FLOW FIELD PREDICTIONS ARE SIMILAR TO K-¢ RESULTS
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63-0205-31A

SCALAR TRANSPORT MODELS

® K-¢ MODEL WITH PRANDTL/SCHMIDT NUMBER — GOOD WHERE
GRADIENT DIFFUSION APPROXIMATION IS VALID

© ALGEBRAIC SCALAR TRANSPORT MODEL

= PROMISING APPROACH
= MOHE VALIDATION WORK IS NEEDED
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TURBULENCE/CHEMISTRY INTERACTION

® BOTH TWO-STEP AND FOUR-STEP SHOW PROMISE

® MODIFIED EDDY BREAKUP SHOULD CONTINUE TO DEVELOP
BECAUSE IT CAN BE EASILY EXTENDED TO MULTISTEP SCHEMES

® BILGER'S TWO-REACTION ZONE MODEL GIVES GOOD RESULTS
FOR JET FLAMES, REQUIRES MORE WORK

63020532
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63-82,1-3A

DILUTION JET MIXING

SLIGHTLY UNDERPREDICTS JET PENETRATION
AT LOW TO MODERATE J VALUES

CENTERLINE TEMPERATURES PREDICTED WELL
TRANSVERSE MIXING PREDICTIONS SLOWER THAN DATA
EFFECT OF S/D, H/D, J ON MIXING PREDICTED CORRECTLY

GOOD COMPARISON WITH DATA FOR JET INJECTION FROM
= ONE WALL

= BOTH WALLS — INLINE ORIFICES

= BOTH WALLS — STAGGERED ORIFICES



CASES WERE DWIDED INTC FOUR FLOW CATEGORIES

THE MAIN OBJECTIVE OF THE NASA-SPONSORED AEROTHERMAL MODELING
PROGRAM, PHASE | WAS TO ASSESS CURRENT AEROTHERMAL SUBMODELS USED
IN THE GARRETT TURBINE ENGINE COMPANY (GTEC) ANALYTICAL COMBUSTOR
MODELS.

A NUMBER OF “BENCHMARK™” QUALITY TEST CASES WERE SELECTED AFTER AN
EXTENSIVE LITERATURE SURVEY. THE SELECTED TEST CASES, BOTH NONREACTING
AND REACTING FLOWS, WERE BROADLY DIVIDED INTO THE FOLLOWING
CATEGORIES:

e SIMPLE FLOWS

© COMPLEX NONSWIRLING FLOWS

e SWIRLING FLOWS

® DILUTION JET MIXING IN CONFINED CROSSFLOWS @

“m«
[+ o]
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TURBULENCE AND CHEMISTRY MODELS
WERE ASSESSED

THESE TEST CASES WERE USED TO ASSESS THE FOLLOWING SUBMODELS
SEPARATELY AND JOINTLY FOR VARIOUS COMBUSTION PRGCESSES:

® k-¢ MODEL OF TURBULENCE AND ALGEBRAIC STRESS MODEL,
WITH AND WITHOUT VARIOUS CORRECTIONS INCLUDING LOW
REYNOLDS NUMBER AND RICHARDSON NUMBER CORRECTIONS

e SCALAR TRANSPORT MODELS

® MULTISTEP KINETIC SCHEMES

® TURBULENCE/CHEMISTRY INTERACTION
e SPRAY COMBUSTION
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ADVANCED NUMERICAL SCHEME IS REQUIRED

THE FOLLOWING GENERAL CONCLUSIONS WERE DERIVED FROM PHASE | WORK

® AN ACCURATE NUMERICAL SCHEME SHOULD BE DEVELOPED
TO MINIMIZE NUMERICAL DIFFUSION IN THE COMPUTATIONS
OF RECIRCULATING FLOWS

e BENCHMARK QUALITY DATA SHOULD BE GENERATED UNDER
WELL-DEFINED ENVIRONMENTS FOR VALIDATING THE VARIOUS
SUBMODELS USED IN GAS TURBINE COMBUST;ON ANALYSIS
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